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Analysis of correlations between sites in models of protein sequences
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A criterion based on conditional probabilities, related to the concept of algorithmic distance, is used to detect
correlated mutations at noncontiguous sites on sequences. We apply this criterion to the problem of analyzing
correlations between sites in protein sequences; however, the analysis applies generally to networks of inter-
acting sites with discrete states at each site. Elementary models, where explicit results can be derived easily,
are introduced. The number of states per site considered ranges from 2, illustrating the relation to familiar
classical spin systems, to 20 states, suitable for representing amino acids. Numerical simulations show that the
criterion remains valid even when the genetic history of the data samples~e.g., protein sequences!, as repre-
sented by a phylogenetic tree, introduces nonindependence between samples. Statistical fluctuations due to
finite sampling are also investigated and do not invalidate the criterion. A subsidiary result is found: The more
homogeneous a population, the more easily its average properties can drift from the properties of its ancestor.
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I. INTRODUCTION

In a previous paper@1# the covariation of mutations a
noncontiguous sequence sites in the V3 loop of the HIV
virus was analyzed via two criteria taken from the theory
information: ‘‘mutual information’’ M and ‘‘information
content’’ I . Related work may be found in@2–8#. Extensions
to the work in@1# were presented in@9# in order to address
phylogenetic effects and effects of correlation at a distan
Correlation at a distance, a term familiar in analysis of s
systems@10#, refers to chains of correlations between d
rectly interacting sites, inducing correlations between s
‘‘at a distance’’ that do not directly interact. The discove
of causal links between events occurring at seemingly se
rated sites of genetic sequences can be of great practica
theoretical importance, whether such links indicate geome
cal properties or more profound interactions. The purpos
this paper is to revisit this problem, in order to validate su
gested criteria for the identification of such links via detail
simulation, and to investigate other criteria. In particular, o
must be aware of statistical biases because, e.g., the m
informationM ~a measure of correlation@11#! is a semiposi-
tive definite quantity and can only be overestimated by fl
tuations. Moreover, members of a population with a comm
ancestry are, by definition, not statistically independent
it is necessary to disentangle true correlations from the s
rious ones that only reflect the common ancestry of gen
sequences. Finally, causal links are not necessarily recipr
and criteria are needed that indicate whether a sitei influ-
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ences a sitej while j is indifferent toi . Last but not least, if
i influencesj , which in turn influencesk, a correlation be-
tween i and k is likely to be detected and it is useful t
distinguish this ‘‘chain effect’’ from a direct causal link. Th
chain effect will be considered briefly at the end of this p
per.

This paper is organized as follows. Section II gives a br
reminder of criteria, taken from the theory of informatio
and probability calculus, to be used here. Then Sec. III
scribes an elementary two-state spin model for the valida
of such criteria. The results of numerical simulations deriv
from this model are given in Sec. IV, with preliminary con
clusions. Section V describes how the model can prov
further conclusions about statistical fluctuations. General
tions to a more biological model, where the spin can ta
e.g., 20 values, to represent amino acids, are the subje
Sec. VI, and are further addressed in@12#. Finally, Sec. VII
contains a discussion and conclusions.

II. CRITERIA

ConsiderM sequences, labeleda,b, . . . , of N sites, la-
beledi , j , . . . , with each site carrying a ‘‘spin’’~e.g., a base,
an amino acid! that can takeS values labeleds,t, . . . . ~All
labels may be understood here as positive integers, run
from 1 up to their maximum ranges.!

We look for correlations between two given sitesi and j .
For that purpose we look at each sequencea in turn and see
whether the spin value at sitei is s and the spin value at site
j is t. After allM individual sequences have been seen, t
defines a numberNst

i j of occurrences, and associated two-s
frequencies, estimators of ‘‘two-site probabilities’’
6312 © 1998 The American Physical Society
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pst
i j 5

Nst
i j

M , ~1!

with (stpst
i j 51. Marginal ‘‘one-site probabilities’’ps

i are
found as traces upon two-site probabilities

ps
i 5(

t
pst

i j . ~2!

This trace operation eliminates any dependence upon
second sitej .

The mutual information for the pairi j may be defined by
the difference of entropies@11#

Mi j 5(
s,t

pst
i j lnS pst

i j

ps
i pt

j D 5Si1Sj2Si j , ~3!

where one recognizes the one-site entropies at sitesi and j
and the two-site entropy. This quantity needs a closer
praisal, however, first because it is symmetric under an
change betweeni and j and also because of the comparis
between the following two models: model 1, a ‘‘ferroma
netic,’’ for which all sequences show all spins up at bo
sitesi and j , namely,11 everywhere, and model 2, anoth
ferromagnetic, in a ‘‘racemic’’ mixture however, in whic
half of the sequences have spins up at both sitesi and j and
the other half of the sequences have spins down at both s
all told half 11 and half22. The numbers that describe th
situation are as follows. For model 1,p1

i 51, p2
i 50 and

hence a one-site entropySi50 at site i and thenp1
j 51,

p2
j 50. Hence again a one-site entropySj50 at site j and

finally p11
i j 51, p12

i j 5p21
i j 5p22

i j 50 and hence a two-site
entropySi j 50. All told, a mutual information indicatorM
50. For model 2,p1

i 5p2
i 5p1

j 5p2
j 51/2 and henceSi

5Sj5 ln 2 and then p11
i j 5p22

i j 51/2, p12
i j 5p21

i j 50.
HenceSi j 5 ln 2. All told, M5 ln 2. Both models share th
important property that sitesi and j have strictly the same
spin, which is a type of link we are interested in. The tw
differing values found forM unfortunately hide the similar
ity of the models. This similarity can be quantified by a
alternate measure, related to algorithmic information the
@13# introduced below.

By definition, if i influencesj , the conditional probability
of finding t at j when i carriess is

p~ j t u is!5
pst

i j

ps
i . ~4!

Hence the following ‘‘conditional entropy’’Ss
i j describes the

influence uponj when i carriess:

Ss
i j 52(

t
p~ j t u is!ln@p~ j t u is!#. ~5!

Since the situation ati most often is not ‘‘pure’’ because
more than one value ofs is found from one sequence t
another, the indicator to be used as a criterion is, logica
the sum of weighted conditional entropies
he

p-
x-

es,

y

,

D~ j u i !5(
s

ps
i Ss

i j 5Si j 2Si . ~6!

This indicator, when symmetrized asD( j u i )1D( i u j ), gives
the algorithmic informationD i j already described elsewher
@13#. It is trivial to verify that, for the two above-mentione
ferromagnetic models, the two values of the conditional
tropy agree,D( j u i )50. As a weighted sum of conditiona
entropies, this indicator has a satisfactory intuitive interp
tation. The value 0 found in the special case of these
models does correspond to a perfect ‘‘link’’ betweeni and j .
It must be noticed, however, thatD( j u i ) is a semipositive
definite quantity such asMi j ; hence fluctuations due to finit
sample effects in the estimation of the probabilities involv
in the definition of this indicator will result in likely overes
timations. It will also be noticed that the lack of symmetry
D( j u i ) under the exchange ofi and j is useful if j does not
influencei .

A slightly different approach was used in@1#, where one
defined

I s
i j 5ps

i ~Sj2S s
i j !. ~7!

The weighting byps
i is the same, butS s

i j comes with an
opposite sign and a contribution bySj ensures the sum rule
(sI s

i j 5Mi j . In this paper the indicatorD( j u i ), whose inter-
pretation seems to be easier, is studied, together withMi j .
The next section describes a test of this indicator via a sc
matized model of genetic evolution.

III. ELEMENTARY MODEL

To validate the proposed observablesD( j u i ) the follow-
ing simple model is introduced. It consists of seven rules

Maximum simplicity rule. There are only spins up an
spins down. A spin up is coded as11 or, when matrix indi-
ces are needed, by index 1. A spin down is coded as21 or
index 2.

Link isolation rule. Again, for the sake of simplicity, no
chain effect is allowed. Ifi influencesj , then j cannot influ-
ence any other site, not eveni .

Thermal flip rule. Still for the sake of simplicity, prob-
abilities of mutations do not depend on time. For each ti
interval, for each sequence, a random number gener
~RNG! generatesN integers between 1 andN, with a flat
distribution; hence each site in each individual sequenc
statistically triggered once. Once triggered, this site may
its spin, with a fixed probabilitya ~thermal flip!.

Influenced flip rule. However, if i influencesj , the trig-
gering of j induces the calculation of a modified probabili
(12gst)a for the flip, whereg is time independent. Ifg is,
e.g., a positive number, the flip probability is thus smal
when the spinss and t at i and j , respectively, are parallel
~Alternately, rather than using a parameterg, one may as
well set two distinct, arbitrary probabilities for spin flips cre
ating and destroying ferromagnetism.!
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Binary tree rule. An N site ‘‘ancestor,’’ ‘‘generation
1,’’ is selected at random. Its sites evolve under the ther
or influenced flip rules forT time intervals~during which the
RNG thus generatesTN integers between 1 andN). Then it
duplicates into two identical copies, making generation
The sites of these descendents evolve for againT time inter-
vals ~thus 2TN site labels are generated by the RNG!, at the
end of which each member of this generation duplicates
identical twins. The process is stopped at the end of gen
tion G, with a populationM52G21.

Star rule. For comparison with the statistical properti
of the ‘‘tree population,’’ where successive duplications in
identical twins obviously create ‘‘genetically correlated’’ d
grees of freedom, 2G21 identical copies of the same ancest
are considered initially and evolve independently forTG
time intervals.

Averaging rule. For each ancestor one calculates t
values ofSi , Si j , D( j u i ), etc., as properties of the corre
sponding final generation, generationG. As will be dis-
cussed later in this paper, statistical fluctuations are not n
ligible. It is thus necessary to average such quantities ov
sampling of independent ancestors. In the next section
averaging is performed over hundreds of ancestors.
al

.

to
a-

g-
a
is

IV. NUMERICAL RESULTS FROM THE ELEMENTARY
MODEL

A priori, because of the link isolation rule, it could b
sufficient to consider only two sites, one independent a
one influenced. Larger values ofN, however, with a small
proportion of interacting pairs of sites, are mandatory to p
vide at least an intuitive estimate of statistical fluctuatio
Out of many numerical runs, the following results corr
spond toN510, with sites 2 and 3 programmed to be infl
enced by sites 8 and 9, respectively. It will be noticed t
with N510 the number of independent ancestors is 10
hence a few hundred ancestors (;300– 500) are enough fo
the implementation of the averaging rule while leaving roo
for some fluctuations.

Typical results are described by the following ‘‘tree’’ an
‘‘star’’ matrices D( j u i ), displayed, respectively, the forme
above the latter.~Notice thati is a row index andj a column
index.! The parameters areG56 and henceM532; then
a50.0015 andT520, which give an average total probab
ity ;aT50.03 for thermally mutating each site during ea
generation. For influenced spins, when triggered, we se
elementary probability 11 times larger thana to flip into a
ferromagnetic situation and a strictly null probability for a
tiferromagnetic flips. Such a choice corresponds to a str
interaction
3
0 212 178 211 196 193 210 203 202 199

214 0 179 212 197 193 211147 204 203

214 213 0 212 200 195 213 205152 203

214 212 178 0 196 193 211 205 204 203

212 210 180 210 0 192 208 202 205 201

213 211 179 211 197 0 210 204 203 205

212 211 179 211 194 191 0 204 202 200

213 154 179 212 196 193 212 0 203 201

211 211 125 211 198 192 209 203 0 201

210 211 178 211 196 195 209 203 202 0

4 ,

3
0 280 287 279 278 290 290 276 283 279

291 0 288 279 275 289 292179 282 279

291 281 0 279 277 290 291 276190 278

291 279 287 0 278 290 293 275 283 280

292 278 288 281 0 289 291 276 283 279

290 278 287 279 275 0 292 276 283 280

288 279 285 281 275 290 0 275 282 276

291 182 287 278 277 290 291 0 282 279

291 278 194 279 277 291 292 276 0 280

291 278 285 280 276 290 289 275 283 0

4 .
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Here both matrices are normalized by a denominator ln 4,
maximum entropy of a system of two spins1

2 , and, for clar-
ity, only the integer part of 1000D( j u i )/ ln 4 is shown. Sev-
eral results appear. Diagonal termsSii 2Si trivially vanish.
Indeed, according to the definition ofNst

i j , there is no differ-
ence at sitei between counting two-site situationsss and
one-site situationss and Nst

ii 50 if sÞt. For nondiagonal
terms, except for a few matrix elements,D( j u i )&Sj , as seen
from the corresponding lists of one-site entropies$226, 223,
189, 223, 210, 205, 223, 216, 216, 215% and$303, 292, 299,
292, 289, 303, 305, 289, 295, 292% for the tree and star case
respectively. A slight, systematic underestimation reflects
usual overestimation ofMi j . The ‘‘genetic’’ correlations
present in the tree data give systematically smaller entro
than those for the star. Conversely, fluctuations for the
case seem to be often a little stronger. The main result is
for both cases, despite all sources of errors, matrix elem
D(2u8), D(3u9), D(8u2), and D(9u3) stand out as the
smallest in their column, ensuring the detection of lin
There is no clear hierarchy, however, betweenD(2u8) and
D(8u2), nor betweenD(3u9) andD(9u3), to detect that sites
8 and 9 influence 2 and 3, respectively, and not the reve
While sites 2 and 3 have identical properties,D(2u8) and
D(3u9) differ by an amount that indicates that fluctuatio
are indeed not negligible. Sites 1 and 4–10 which are nei
influenced nor influencing, show similar columns in the tr
matrix @except for the presence ofD(8u2) andD(9u3), natu-
rally#. The same remark holds for the star matrix. Slight d
ferences between such columns indicate a ‘‘normal’’ amo
of fluctuations.

All these conclusions are stable when one studies the
fluence of the ratea. This is illustrated by Fig. 1 and a
additional observation may be made: Ifi influencesj , there
seems to be, for both the tree and the star models, a ‘‘s
a’’ regime, whereD( j u i ) is larger than its spurious partne

FIG. 1. Nonreciprocal influences. Tree and star evolution pr
erties as functions of the mutation rateA[103a. Light full lines,
average single site entropy for isolated sites; heavy full lines, a
age weighted conditional entropy for sites under influence; das
lines, average weighted conditional entropy for influencing si
For each type of line, the lower~upper! line corresponds to tree
~star! results.
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D( i u j ) in column i , and a ‘‘largea’’ regime, whereD( j u i )
,D( i u j ). The casea50.0015 shown above was indeed ch
sen because of its transitional situation. It must be stres
however, that such conclusions are valid for averages o
Fluctuations in individual trees and stars were found to c
ate many exceptions.

We now turn to the case of reciprocal influences. Name
the link isolation rule is modified and nowj influencesi in
the same way asi influencesj , all other rules, the influenced
flip rule in particular, remaining the same. For the sake
simplicity, we again avoid any chaining of influences: Inte
acting pairs of sites are isolated.

A few illustrative results, among many runs, are shown
Fig. 2, obtained with the same parameters as in Fig. 1N
510, G56, T520, ‘‘ferromagnetic flip probability’’ 11a,
and ‘‘antiferromagnetic flips’’ forbidden!, six isolated sites,
two symmetrically interacting pairs$27% and $49%, and 500
random ancestors. The signature for influence is agai
strong minimum ofD( j u i ) as a function ofi in column j .
For both the tree and the star cases, the average entrop
single isolated sites~dotted line! increases as a function o
the thermal ratea, while the average conditional entropy fo
sites under influence~heavy line! decreases. The same tren
were already shown by Fig. 1, with somewhat different e
tropy values, however. We show in Fig. 2 two addition
kinds of results: as a light full line, the average single s
entropy for sites under~reciprocal! influence, and as a dashe
line, the average of those matrix elements that, incolumns,
contrastwith detectedD( i u j ). The latter point is best under
stood by the consideration of the following tree and s
matrices, respectively:

-

r-
ed
. FIG. 2. Reciprocal influences. Tree and star evolution proper
as functions of the mutation rateA[103a. Dotted lines, average
single site entropy for isolated sites; light full lines, average sin
site entropy for sites under reciprocal influence; dashed lines, a
age weighted conditional entropy in those columns of matrixD
where influence is detected; heavy full lines, average weighted c
ditional entropy for sites under reciprocal influence. For each t
of line, the lower~upper! line corresponds to tree~star! results.
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3
0 139 89 149 86 90 144 77 143 91

88 0 87 147 85 86 106 77 141 93

90 138 0 148 86 88 144 78 142 92

89 138 86 0 85 87 143 77102 91

89 139 88 148 0 88 144 77 143 93

90 137 88 148 86 0 144 78 142 93

87 101 87 146 84 86 0 76 141 91

89 140 89 150 87 89 145 0 144 93

88 138 87 108 86 87 143 77 0 92

88 140 88 148 87 89 144 77 143 0

4 3
0 219 135 219 141 138 218 136 219 140

142 0 135 221 140 137142 136 222 140

142 220 0 219 140 138 218 137 219 141

142 223 135 0 140 138 221 137146 140

143 220 135 219 0 138 219 137 219 140

142 219 135 218 140 0 218 137 219 141

142 144 135 221 140 138 0 137 222 140

141 219 136 219 140 139 219 0 219 140

142 223 135 146 140 138 222 137 0 140

142 220 135 218 139 139 218 136 218 0

4 ,
s
n

th
7

s

a
b

g.
y
s
-

ns

ed
se
e
e
a
7

e
on
, 7

ns.
ere
u-

ons

ion
be
c-
not
per-

e-
ges,
m
er-

ow
in a
ew

in

, a
and
d

u-
obtained for a50.005. The matrix elementsD(2u7),
D(4u9), D(7u2), andD(9u4), which reflect the influence
programmed in the run, are detected as minima in colum
not rows. Accordingly, the dashed curves in Fig. 2 show
averages of such 32 ‘‘larger’’ numbers in columns 2, 4,
and 9, this is, for the tree and star cases, respectively. A
additional conclusion, for all the values ofa that were con-
sidered, it is found thatD( j u i ).D( i u j ) when i and j are
reciprocally influencing each other.

All told, the expected intensity of the signal that allows
detection of an interaction corresponds to the distance
tween a heavy line and the associated dashed line in Fi
In the range of parameters displayed there, this intensit
about three times smaller for trees than for stars. For tree
is seen to be;0.05 ln 4.0.07, which leaves hope for suc
cessful detections in realistic cases.

About fluctuations, severe exceptions to the conclusio
drawn from averages may happen in the case ofnonaveraged
data. As an illustration, the following tree matrix, obtain
with a50.02 and all other parameters identical to those u
for Fig. 2, refers toone ancestor only. Note how much th
matrix conflicts with averaged data: During the 120 tim
intervals of the run, only 13 mutations happened and in p
ticular no mutation triggered influenced flips at sites 2, 4,
and 9. Therefore,S25S45S75S950:

3
0 0 87 0 296 264 0 81 0 87

494 0 100 0 499 272 0 100 0 100

481 0 0 0 481 269 0 100 0 100

494 0 100 0 499 272 0 100 0 100

292 0 83 0 0 261 0 86 0 86

487 0 97 0 488 0 0 97 0 97

494 0 100 0 499 272 0 100 0 100

475 0 100 0 484 269 0 0 0 100

494 0 100 0 499 272 0 100 0 100

481 0 100 0 484 269 0 100 0 0

4 .

It must be remembered here that the semipositive natur
the mutual information induces the automatic conditi
D( j u i )<Sj . Hence the whole corresponding columns 2, 4
s,
e
,
an

e-
2.
is
, it

d

r-
,

of

,

and 9 vanishes, and no detection is possible in such colum
Also, a spurious contrast occurs in columns 1 and 5, wh
D(5u1) andD(1u5) stand out as much smaller, while act
ally this run allowed interactions inside pairs$27% and $49%
only. Similar aberrant cases are not infrequent in simulati
of a star topology as well.

To summarize this section, acontrast between average
weighted conditional entropies was found to give a detect
criterion for correlations between sites. The signal may
blurred by the noise of fluctuations, however, if the intera
tion between sites is weak or the sampling of ancestors is
numerous enough. The next section investigates the pro
ties of such ‘‘noise.’’

V. SYSTEMATIC STUDY OF FLUCTUATIONS

Given the above, it is clear that, for such biological s
quences, there is a non-negligible risk for statistical avera
taken from an actual population, to differ significantly fro
true probability averages. A detailed description and und
standing of this risk is in order. For that purpose, we n
generate a model where fluctuations can be exhibited
transparent way. The model is very similar, except for a f
details, to that explained in Sec. III. Consider again a sitei ,
occupied by a ‘‘spin’’ with only two allowed values61. The
basic ingredient of the model is the matrixP(s,r ) giving the
probability that, within the lifetime of one generation, sitei
starting with spinr finishes with spins. Three generations
are considered in the model, with a common ancestor spr
at sitei . For the star, a divergence intoM58 descendents is
allowed from the very root of the process. For the tree
divergence into two descendents is allowed at the root
two additional levels of duplication are allowed. At the en
of the lifetime of three generations, the probability distrib
tion for the spinss,t,u,v,w,x,y,z of a star population of
eight descendents is thus

S~s,t,u,v,w,x,y,z!5P 3~s,r !P 3~ t,r !P 3~u,r !P 3~v,r !

3P 3~w,r !P 3~x,r !P 3~y,r !P 3~z,r !,

~8!

where, naturally,P 3 denotes the matrix cube ofP. In turn,
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the probability distributionT for the spins of the tree popu
lation of eight descendents~see Fig. 3! is easily derived from
the three-index probability

Q~ l ,m,r !5P~ l ,r !P~m,r ! ~9!

that at sitei a spinr , once duplicated, turns into spinsl and
m as its descendents. All told one finds

T~s,t,u,v,w,x,y,z!

5 (
l ,m,n,o,p,q

Q~s,t,n!Q~u,v,o!Q~w,x,p!

3Q~y,z,q!Q~n,o,l !Q~p,q,m!Q~ l ,m,r !. ~10!

In a transparent notation,l andm are here the spins of th
two descendents at the end of the first generation. They
followed by n, o, p, andq at the end of the second gener
tion.

For the sake of simplicity, we set

P~s,r !5F12« «

« 12«
G ~11!

in the following, with a parameter« taking on all values
between 0 and 0.5.~The relation of« with the parametera
used earlier is trivial.! Most relevant properties of the mod
are thus elementary functions of«. Their study can some
times even be reduced to polynomial operations with resp
to «. Such is indeed the case for the average value of
spin, as sampled over the population of eight descend
and averaged over the probability distributionsT or S,

sT5 (
s,t,u, . . . ,z

T~s,t,u,v,w,x,y,z!

3
s1t1u1v1w1x1y1z

8
, ~12a!

FIG. 3. Illustration of the three generation tree and star mod
used in Sec. V.
re

ct
e
ts

sS5 (
s,t,u, . . . ,z

S~s,t,u,v,w,x,y,z!

3
s1t1u1v1w1x1y1z

8
~12b!

for the tree and star, respectively.~In a condensed notation
such ‘‘integrals’’ are denoted aŝ&T,S in the following.!

Here we are interested in the observableR5(s1t1u
1v1w1x1y1z)/8 ands5^R&, where the subscriptT or
S is understood. We are also interested in the fluctuation
R,

~DR!25^~R2s!2&

5^~s1t1u1v1w1x1y1z!2&/642s2, ~13!

which are given by polynomials with respect to«. Given the
same rootr 511 for a tree and a star, the following prope
ties are easy to show:~i! the average value of the spin is th
same for all individuals

sT5sS5^s&T5^s&S5¯5^z&T5^z&S5~122«!3

~14!

and ~ii ! for the star, correlations vanish since the branch
are independent,

^~s2s!~ t2s!&S5^~s2s!~u2s!&S5¯

5^~y2s!~z2s!&S50, ~15!

while for the tree one finds^st&5^uv&5^wx&5^yz&
5(122«)2, and then ^su&5^sv&5^tu&5^tv&5^wy&
5^wz&5^xy&5^xz&5(122«)4 and finally ^sw&5^sx&
5¯5^vw&5¯5^vy&5^vz&5(122«)6. The relation of
such overlaps with the degree of parentage of the spin
obvious. Hence the correlations^(s2s)(t2s)&T at closest
parentage and̂(s2s)(u2s)&T at next-to-closest parentag
are positive definite if 0,«,0.5. Any third-order parentage
correlation such aŝ(s2«)(w2s)&T vanishes, as expecte
because there is no difference between the tree and star
tories at that degree in this model. Also, obviously, any a
erage of squared spins gives^s2&51 for both the tree and the
star and no cross term is negative. The results forr 521 are
quite similar, under a replacement of 122« by 2«21. It can
be concluded that

~DR!T
2 5

11~122«!212~122«!424~122«!6

8
.~DR!S

2

5
12~122«!6

8
, ~16!

namely, the sampling of the average spin over a finite po
lation induces a larger fluctuation for the tree than for t
star. It will be noticed here that (DR)S illustrates the centra
limit theorem ~CLT! in a transparent way. Conversely, th
positive correlations brought by the tree dynamics incre
the fluctuations of the average sampled spinR.

ls
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Alternate procedures are available and deserve comm
because they give different estimates of sampling fluct
tions. Indeed, one may define, as a measure of the fluctua
the quantity

~Dr!25 K S s2
s1t1u1v1w1x1y1z

8 D 2L , ~17!

which describes how, in each population, individual sp
may deviate from the average spin. The results read

~Dr!T
2 5

72~122«!222~122«!424~122«!6

8

,~Dr!S
25

7@12~122«!6#

8
. ~18!

Naturally, one might also have considered averages
square differences between all spin pairs,

~Dt!2 5^@~s2t !21~s2u!21¯1~y2z!2#&/28, ~19!

with the results,

~Dt!T
2 52F12

~122«!212~122«!414~122«!6

7 G
,~Dt!S

252@12~122«!6#. ~20!

It may be interesting to give a mechanical image of su
results@Eqs.~16!, ~18!, and~20!#. Consider the spins as fic
titious ‘‘particles’’ and the ‘‘average by sampling’’R5(s
1t1¯1z)/8 as their center of mass. Then the positive c
relations, introduced by the tree dynamics, compress
‘‘root mean squared relative distance’’ described byDt and
dilate the center-of-mass fluctuation described byDR. This
connection between the two numbersDR and Dt may be
understood as anecessary uncertainty relation, somewhat
similar to the traditional uncertainity relation of quantu
mechanics. One may make the qualitative conclusion th
reduced diversity inside a population may lead to a stron
global drift of that population. A similar intuition result
from a mechanical image ofDr as the dispersion of a par
ticle with respect to the ‘‘center of mass.’’ The tree dynam
tends to compress this individual dispersion, as compare
that allowed by the star dynamics independence. Acco
ingly, individual compressions relate to a more likely glob
drift.

There is no difficulty in generalizing all these conside
ations to models with more thanM58 individuals because
obviously, ‘‘center of mass observables’’ imply positiv
signs multiplying the correlations while ‘‘relative motion ob
servables’’ imply negative signs multiplying the same. T
duality of such observables is systematic. In particular, wh
the CLT is obviously valid for (DR)S , the result for (DR)T ,
with G generations andM52G, reads
nt
-

on

s

of

h

-
e

a
er

s
to
d-
l

e

~DR!T
25

12~122«!2G1 (
p51

G21

2p21@~122«!2p2~122«!2G#

2G

522GF12
bG

2
1

b@bG2121#

2~b21! G5
~22b!~bG21!

2G11~b21!
,

~21!

with b52(122«)2. Since« is small in realistic cases, a
investigation of (DR)T

2 in the vicinity of b&2 is in order.
For such values ofb and large values ofG the leading term
of (DR)T

2 amounts to (22b)bG/2G11, the maximum of
which is reached forb52G/(G11), a value indeed hardly
smaller than 2. The corresponding estimated maximum re
approximately @222G1GG(G11)2G#(G21)21, the
asymptotic trend of which is approximately (eG)21. The
‘‘tree deviation’’ from the CLT is thus striking since, fo
comparison, (DR)S

2 contains a denominator 2G.
There is a qualitative relation betweenDt, or Dr, and the

one-site entropySi defined in Sec. II, namely, if any one o
these observables vanish, then the others vanish sim
neously. It is clear that, in turn, correlation functions b
tween spins at sitei and spins at sitej would also provide an
‘‘algebraic’’ intuition for the behavior of the two-site en
tropy Si j . For the sake of conciseness, however, we n
investigate directly the effect of finite sampling upon t
various observablesSi , Si j , Mi j , andD( j u i ). Let s,t, . . . ,z
be the eight spins at sitei ands8,t8, . . . ,z8 be those at sitej .
We label the root of the three generation tree or star asr for
site i and r 8 for site j . No interaction is implemented be
tween the two sites because only ‘‘bare’’ fluctuations due
finite sampling are investigated here. We have thoroug
verified that, under such an independence, results are
same whetherr 5r 8 or rÞr 8. Let O be any observable tha
is a function of all or part of the final spinss,t, . . . ,z8, such
as the sampled one-site entropy at sitei ,

Si52S 11R

2 D lnS 11R

2 D2S 12R

2 D lnS 12R

2 D , ~22!

where R5(s1t1¯1z)/8 is the center of mass. The nu
merical results that follow are those averages defined by

^O&T5 (
s,t, . . . ,z,s8,t8, . . . ,z8

T~s,t, . . . ,z!T~s8,t8, . . . ,z8!O,

~23a!

^O&S5 (
s,t, . . . ,z,s8,t8, . . . ,z8

S~s,t, . . . ,z!S~s8,t8, . . . ,z8!O

~23b!

for the tree and star, respectively; see Eqs.~8! and ~10!. Of
special interest are the one- and two-site mutual and co
tional entropies, as already defined in Sec. II, naturally, a
the corresponding fluctuationsDO5@^O 2&2^O&2#1/2.

We show, in Fig. 4, the averages of the one- and two-
entropies for the three generation tree and star, respectiv
in units of ln 4, as functions of«. ~Actually, this plot uses an
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auxilliary rate E[40«.) A saturation is observed when«
*0.2. Both entropies are slightly larger for the star than
the tree. Since sitesi and j are independent in the model, on
should find ^Si j &52^Si&. However, because of the erro
brought by finite sampling in a population of eight individu
sequences only, a close examination of Fig. 4 shows
actually ^Si j & is rather slightly, but systematically, smalle
than 2̂ Si&.

Then we show, in Fig. 5, the averages of the mutual a
the weighted conditional entropies. Properties similar
those of Fig. 4 are observed. Moreover, it must be stres
that, since the sites are independent, one might ex
^Mi j &50 and^D( j u i )&5^Si& for both the tree and the sta
Clear deviations, however, due to finite sampling, are fou
from such predictions. ActuallŷMi j & is far from vanishing
and, furthermore, the plateau of^D( j u i )& in Fig. 5 seriously
differs from that of^Si& in Fig. 4.

We now turn to the fluctuationsDST
i j ,DSS

i j ,DST
i ,DSS

i ,
shown in Fig. 6, in that order, from top to bottom. It is se
that such fluctuations are almost as large for one-site en
pies as for two-site ones. Moreover, their order of magnitu
can be almost as large as a one-site average entropy itse
shown by the values reached when«.0.04. This shows how
the estimation of an entropy over a small population can

FIG. 4. Tree and star average properties after three generat
One- and two-sitesampledentropies in units of ln 4 as functions o
the mutation rate parameterE[40«. The lower pair of curves
showŝ Si&. The star entropy is slightly larger than the tree one. T
upper pair of curves showŝSi j &. Again ^Si j &S*^Si j &T .
r

at

d
o
ed
ct

d

o-
e
, as

e

misleading. Two differences from Fig. 4 are seen:~i! the
fluctuations are not monotonic functions of« and ~ii ! tree
fluctuations are larger than star ones, while tree entrop
were smaller. HenceDS/^S& is larger for trees than for stars
In terms of relative rather than absolute errors, statist
sampling from finite populations driven by evolutionay d
namics down a tree demands special caution.

Finally, Fig. 7 shows the behaviors of the fluctuatio
DMi j ~bottom pair of curves! and D@D( j u i )# ~upper pair!.
We find that whether«&0.04 or, conversely,«*0.04, the
fluctuation of the mutual information is~slightly! larger or
smaller, respectively, for the star than for the tree. Mo
important, it is seen thatDMi j tends to be somewhat smalle
than D@D( j u i )#, which would point to the mutual informa
tion as a better criterion. Returning to Fig. 5, however, wh
^D( j u i )& is significantly larger than the spurious nonvanis
ing ^Mi j &, it seems safer to stick toD( j u i ) as a criterion for
true correlations. Indeed, with such a likely smallerrelative
error, drops ofD( j u i ), as observed in the columns of th
matrices of Sec. III, make a cleaner signal.

To summarize this section there is some evidence tha~i!
a tabulation of noise levels is reasonably easy from elem
tary models and~ii ! in any case the ‘‘drop ofD( j u i )’’ crite-
rion is always useful. The next section attempts to genera
such optimistic conclusions.

VI. GENERALIZATIONS TO MODELS WITH ANY
NUMBER OF BASES AND/OR AMINOACIDS:

THE INVERSION PROBLEM

In Sec. II we defined observables valid for any numbeS
of spin values, while only the caseS52 was investigated in
Secs. III–V. For DNA and RNAS54 and for proteinsS
520. Numerical simulations for such cases, not repor
here, do not give results that contradict, or differ significan
from, those discussed and listed in Secs. III–V. Similar d
creases of weighted conditional entropy, for instance, are
served in the case of influence between sites. Similar ba
ground noise, due to fluctuations, is also present. There
difference in the formalism to be used, however, pertain
to the coding of states and mutations. WithS54, for in-
stance, and a labeling of adenine, thymine, guanine, and
tosine by 1, 2, 3, and 4, respectively, a mutation from a

ns.

e

f curves
FIG. 5. Same as Fig. 4, but for the sampled mutual information and the sampled, weighted conditional entropy. The lower pair o
shows^Mi j & and the upper pair shows^D( j u i )&. Inside each pair, the upper curve corresponds to the star results.
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enine to guanine and a mutation from thymine to cytos
would both be coded by an increase of the spin label by
The problem of interpretation raised by such an ambiguit
hardly acceptable. There is thus less interest in generali
Eqs.~12!–~21!, unless each of the 16 possible mutations h
a specific coding compatible with such generalized eq
tions. The mutual information and the conditional entrop
nevertheless, retain their definitions without any difficulty
this formalism.

For S.2 it is simpler to code the situation at sitei by S
occupation numbersns

i , s51,2,. . . ,S, restricted to two val-
ues ns

i 50 and ns
i 51. Also an obvious constraint(sns

i 51
shall restrict the 2S possibilities, offered by such a coding,
the onlyS meaningful ones. Except for such a constraint,
numbersns

i are otherwise independent random variabl
Similar sets of occupation numbersnt

j , with similar con-
straints( tnt

j51, will describe the situation at all the othe
sites j . The occurrence numbers considered in Sec. II
then nothing butNst

i j [(a51
M ns

i (a)nt
j (a), wherea labels each

individual in the sampled population and, obviously,ns
i (a)

andnt
j (a) describe the presence or absence of residuess and

t at sitesi and j , respectively, in this individuala. Thus Eqs.
~1!–~7! generalize, trivially. It is easy to create null mode
with or without dynamical correlations between sites, gen
alizing the models and results of Secs. III–V. In particu
there is no difficulty in generalizing Eqs.~23!.

Rather than a tabulation and calibration of true and s
rious amounts of correlations derived from such elemen
models, the present section presents a solution of the foll
ing ‘‘inverse problem’’@9#: Givenaverage values of observ
ables, obtained from sampling,

ns
i 5^ns

i &5M21(
a51

M

ns
i ~a!,

nst
i j 5^ns

i nt
j&5M21(

a51

M

ns
i ~a!nt

j~a!, ~24!

and the additional constraints

(
s51

S

ns
i 51, i 51, . . . ,N, ~25!

what are the sites iand j whose contacts are compatible wi
such constraints?

The traditional probability distribution with maximum en
tropy for sequencesa coded by degrees of freedom$n%
[$ns

i , i 51, . . . ,N; s51, . . . ,S%, under the constraints
listed by Eqs.~24! and ~25!, reads

P~a!5Z21 expF2(
i 51

N

(
s51

S

ls
i ns

i ~a!

2(
i 51

N

(
j . i

N

(
s51

S

(
t51

S

lst
i j ns

i ~a!nt
j~a!

2(
i 51

N

l iS 12(
s51

S

ns
i ~a!D nG , ~26!
e
2.
s
ng
s
-

,

e
.

e

,
r-
r

-
ry

-

wheren51 and the partition functionZ is a sum over all the
2N sequences that can be constructed when the occup
numbers take on values 0 and 1,

Z5(
$n%

expF2(
i 51

N

(
s51

S

ls
i ns

i 2(
i 51

N

(
j . i

N

(
s51

S

(
t51

S

lst
i j ns

i nt
j

2(
i 51

N

l iS 12(
s51

S

ns
i D nG . ~27!

The Lagrange multiplersls
i andlst

i j are adjusted later in suc
a way as to satisfy the constraints~24!,

ns
i 52Z21

]Z

]ls
i 5Z21(

$n%
ns

i expF2(
i 51

N

(
s51

S

ls
i ns

i

2(
i 51

N

(
j . i

N

(
s51

S

(
t51

S

lst
i j ns

i nt
j G , ~28a!

nst
i j 52Z21

]Z

]lst
i j 5Z21(

$n%
ns

i nt
j expF2(

i 51

N

(
s51

S

ls
i ns

i

2(
i 51

N

(
j . i

N

(
s51

S

(
t51

S

lst
i j ns

i nt
j G . ~28b!

The remaining Lagrange multipliersl i are adjusted in such a
way as to satisfy Eq.~25!, naturally, withn51. However,
nothing prevents us from takinga priori a unique and large
positive valueL for such remaining parameters while settin
n52 in order to better enforce the constraints~25!. The sum-
mations then run, in practice, over the onlySN admissible
configurations, where one solves for, e.g., the twentieth
cupation number in terms of the other nineteen. OnceZ is
calculated via such suitableSN configurations, this amounts
in the space of Lagrange multipliers, to solve for the mi
mum of the free energy

F52 ln Z2(
i 51

N

(
s51

S

ls
i ns

i 2(
i 51

N

(
j . i

N

(
s51

S

(
t51

S

lst
i j nst

i j .

~29!

Convexity properties make this minimum unique@14#. The
process therefore returns a unique set of parametersls

i and
lst

i j .
Define a ‘‘contact index’’Ci j that vanishes if sitesi and j

do not interact. Conversely, defineCi j 51 when such sites
are close enough to induce interactions. It is reasonabl
assignCi j 50 to those pairsi j of sites for whichall the lst

i j

(s51, . . . ,S; t51, . . .S), as obtained from the procedur
that has just been described, are vanishing or small in s
sense. Conversely, it is reasonable to assignCi j 51 whenat
least oneof theselst

i j is large. This raises a problem of sca
for the variouslst

i j ’s. We shall assume that such numbers,
rather their absolute values, cluster into two groups, nam
the ‘‘small’’ and the ‘‘large’’ ulst

i j u ’s, respectively. For those
pairs$ i j % for which everyulst

i j u is small, it can be concluded
that Ci j 50. Conversely, for those pairs of sites for whichat
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FIG. 6. Same as Fig. 4, but for the fluctuations ofSi andSi j . The lower pair of curves showsDSi and the upper pair showsDSi j . Inside
each pair, the upper curve now corresponds to the tree results.
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least one of the ulst
i j u ’s is a member of the other cluste

namely, thisulst
i j u is interpreted as large, it can be conclud

that Ci j 51.
Preliminary calculations@9# show that this procedure ma

eliminate spurious chainings. That such a result is poss
while not mandatory, is easy to understand from Eq.~26!,
which, although parametrized by one- and two-body featu
only, trivially allows for observables of any higher rank. F
instance, it is straightforward to calculate three-body obse
ables such aŝns

i nt
jnu

k&.
To summarize this section, multiple valued spin mod

are available, and simple enough, to study the influence
statistical fluctuations upon remote site correlations. Bey
numerical tabulations of various noise levels, and cor
sponding confidence levels, forMi j and/orD( j u i ) for trees
and stars, the maximum entropy procedure described by
~26!–~28! ~see also@9#! provides convenient estimates
links lst

i j between sites and of resulting contact indicesCi j .

VII. DISCUSSION AND CONCLUSIONS

In the search for evidence of contacts between seemi
remote sites of biological sequences, this paper essent
reports three results and one failure.

The first result is the validation of a criterion related
e,

s

v-

s
of
d
-

s.

ly
lly

algorithmic information theory, incorporating condition
probablities. The indicatorD( j u i ) defined by Eqs.~5! and~6!
drops significantly when there is a causal relation betw
sitesi and j and the drop does not seem to be overly sen
tive to statistical fluctuations or to correlations induced
shared ancestry. The more familiar mutual information b
tween sitesMi j does not seem to be so robust.

The failure is related to this first result. We did not find
clear signature for nonreciprocal influences. From a phys
point of view this is not a major issue since action and re
tion are reciprocal. In the case of historical evolution
though, with delayed actions, this problem is not witho
interest and deserves further investigation.

The second result is the large available class ofpracti-
cablespin models, null models without interactions, or mo
realistic ones with intersite influences. As we discussed
some detail, both analytically and numerically, such mod
are quite useful to understand the role of statistical fluct
tions linked to finite sampling and those associated with
fects of shared ancestry of sequences. The point is, natur
that various degrees of freedom of the problem are not in
pendent variables and the central limit theorem is violated
the comparison between models of evolution down a t
versus star topologies, an intuitive ‘‘uncertainty principle
was formalized: Those evolutions that favor similarity b
FIG. 7. Fluctuations ofMi j ~lower pair of curves! andD( j u i ) ~upper pair!. For the upper pair,D@D( j u i )#T.D@D( j u i )#S . For the lower
pair, the star fluctuation is larger than the tree one if«&0.04. It becomes smaller if«*0.04.
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tween individuals amplify collective deviations from ance
tral properties. It is trivial to generalize to multivalued spi
the ‘‘sign argument’’ used after Eq.~20!. Namely, any posi-
tive result for a correlation̂ns

i (a)ns
i (b)&2^ns

i &2 between in-
dividuals will induce a lowering of the interindividua
^@ns

i (a)2ns
i (b)#2& dispersion and, simultaneouly, an in

crease of the fluctuation of the center of mass aver
M21(ans

i (a) over the population. Above all, such mode
are valuable for a numerical tabulation of such fluctuatio
Any signal exceeding the fluctuations deduced from
models thus exceeds a confidence threshold and can be
as reliable evidence.

The third result is the maximum entropy solution of t
inverse problem ‘‘given correlations, find the couplings b
tween sites.’’ There is a risk that the couplings may n
at

D.

in

in
n
e

-

e

.
e
ken

-
t

cluster into two groups of, respectively, large and small c
plings. However, the convexity of this algorithm and th
uniqueness of the couplings provided by this solution
worth consideration. In addition to the preliminary resu
presented in@9# and the results reported here, a systema
investigation of the application of this formalism to real bi
logical sequences@12# is in progress.
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