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Analysis of correlations between sites in models of protein sequences
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A criterion based on conditional probabilities, related to the concept of algorithmic distance, is used to detect
correlated mutations at noncontiguous sites on sequences. We apply this criterion to the problem of analyzing
correlations between sites in protein sequences; however, the analysis applies generally to networks of inter-
acting sites with discrete states at each site. Elementary models, where explicit results can be derived easily,
are introduced. The number of states per site considered ranges from 2, illustrating the relation to familiar
classical spin systems, to 20 states, suitable for representing amino acids. Numerical simulations show that the
criterion remains valid even when the genetic history of the data sar(elgs protein sequencess repre-
sented by a phylogenetic tree, introduces nonindependence between samples. Statistical fluctuations due to
finite sampling are also investigated and do not invalidate the criterion. A subsidiary result is found: The more
homogeneous a population, the more easily its average properties can drift from the properties of its ancestor.
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[. INTRODUCTION ences a sitg¢ while j is indifferent toi. Last but not least, if
i influencesj, which in turn influences, a correlation be-

In a previous papefl] the covariation of mutations at tweeni andk is likely to be detected and it is useful to
noncontiguous sequence sites in the V3 loop of the HIV-1distinguish this “chain effect” from a direct causal link. The
virus was analyzed via two criteria taken from the theory ofchain effect will be considered briefly at the end of this pa-
information: “mutual information” M and “information  Per.
content” |. Related work may be found [2—8]. Extensions This paper is organized as follows. Section Il gives a brief
to the work in[1] were presented if9] in order to address reminder of criteria, taken from the theory of information
phylogenetic effects and effects of correlation at a distanceand probability calculus, to be used here. Then Sec. Ill de-
Correlation at a distance, a term familiar in analysis of spinscribes an elementary two-state spin model for the validation
systems[10], refers to chains of correlations between di- of such criteria. The results of numerical simulations derived
rectly interacting sites, inducing correlations between sitedrom this model are given in Sec. IV, with preliminary con-
“at a distance” that do not directly interact. The discovery clusions. Section V describes how the model can provide
of causal links between events occurring at seemingly sepdurther conclusions about statistical fluctuations. Generaliza-
rated sites of genetic sequences can be of great practical aH@ns to a more biological model, where the spin can take,
theoretical importance, whether such links indicate geometri€.g., 20 values, to represent amino acids, are the subject of
cal properties or more profound interactions. The purpose ofec. VI, and are further addressed ¥2]. Finally, Sec. VII
this paper is to revisit this problem, in order to validate sug-contains a discussion and conclusions.
gested criteria for the identification of such links via detailed
simulation, and to investigate other criteria. In particular, one Il. CRITERIA
must be aware of statistical biases because, e.g., the mutual
informationM (a measure of correlatiqi 1]) is a semiposi- ConsiderM sequences, labeleaib, ..., of N sites, la-
tive definite quantity and can only be overestimated by flucbeledi,j, ..., with each site carrying a “spin’(e.g., a base,
tuations. Moreover, members of a population with a commoran amino aciglithat can takeS values labeledt, . ... (All
ancestry are, by definition, not statistically independent andabels may be understood here as positive integers, running
it is necessary to disentangle true correlations from the spurom 1 up to their maximum ranges.
rious ones that only reflect the common ancestry of genetic We look for correlations between two given siteandj.
sequences. Finally, causal links are not necessarily reciprockbr that purpose we look at each sequeade turn and see
and criteria are needed that indicate whether aisitélu-  whether the spin value at sités s and the spin value at site

j ist. After all M individual sequences have been seen, this
defines a numbeNy, of occurrences, and associated two-site
* Author to whom correspondence should be addressed. frequencies, estimators of “two-site probabilities”
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i

ph=- @ A(jl)=2 psSJ=8'-8. (®)
with =¢pli=1. Marginal “one-site probabilities’p’ are o _ _
found as traces upon two-site probabilities This indicator, when symmetrized as(j|i)+A(ilj), gives
) - the algorithmic informatiom\" already described elsewhere
p's=§t: P - (2)  [13]. Itis trivial to verify that, for the two above-mentioned

ferromagnetic models, the two values of the conditional en-
tropy agree A(jli)=0. As a weighted sum of conditional

;I’Qésor;c;agﬁqoperatlon eliminates any dependence upon th@ntropies, this indicator has a satisfactory intuitive interpre-

The mutual information for the paif may be defined by tation. The value 0 found in the spec_ial case o_f thes_,e two
the difference of entropiei1] models does correspond to a perfect “link” betweaeandj.
It must be noticed, however, that(j|i) is a semipositive
definite quantity such adl"'; hence fluctuations due to finite
i sample effects in the estimation of the probabilities involved
Mi=2 pi |n(_?itj,> =S +5-gi (3)  inthe definition of this indicator will result in likely overes-
st sPt timations. It will also be noticed that the lack of symmetry of
A(jli) under the exchange ofandj is useful ifj does not
where one recognizes the one-site entropies at Bitexl j influencei.
and the two-site entropy. This quantity needs a closer ap- A slightly different approach was used fit)], where one
praisal, however, first because it is symmetric under an exdefined
change betweehandj and also because of the comparison
between the following two models: model 1, a “ferromag-
netic,” for which all sequences show all spins up at both
sitesi andj, namely,++ everywhere, and model 2, another 1U=pl(si—-sY). 7
ferromagnetic, in a “racemic” mixture however, in which
half of the sequences have spins up at both sitasdj and . 3
the other half of the sequences have spins down at both siteShe weighting bypy is the same, buSY comes with an
all told half ++ and half——. The numbers that describe the opposite sign and a contribution I8} ensures the sum rule
situation are as follows. For model p;, =1, p_=0 and  >J=M. In this paper the indicatek(j|i), whose inter-
hence a one-site entropy =0 at sitei and thenp’, =1,  pretation seems to be easier, is studied, together Miith
p!_=0. Hence again a one-site entropy=0 at sitej and  The next section describes a test of this indicator via a sche-
finally p'! , =1, p'l _=p",=p" _=0 and hence a two-site matized model of genetic evolution.
entropy S’ =0. All told, a mutual information indicatoM
=0. For model 2,p',=p" =pl =p'=1/2 and henceS
=9=In2 and then p'l =p_=1/2, p!_=p', =0. lll. ELEMENTARY MODEL
HenceS’=In 2. All told, M=In 2. Both models share the 14 yalidate the proposed observablegj|i) the follow-
important property that sitésand j have strictly the same g simple model is introduced. It consists of seven rules.
spin, which is a type of link we are interested in. The tWo  “\jaximum simplicity rule. There are only spins up and
differing values found foM unfortunately hide the similar- spins down. A spin up is coded asl or, when matrix indi-

ity of the models. This similarity can be quantified by an .aq are needed, by index 1. A spin down is codeg-4sor
alternate measure, related to algorithmic information theory,qex 2.

[13] introduced below.
By definition, ifi influences, the conditional probability
of findingt atj wheni carriess is

Link isolation rule. Again, for the sake of simplicity, no
chain effect is allowed. If influencesj, thenj cannot influ-
ence any other site, not evén

Thermal flip rule. Still for the sake of simplicity, prob-
abilities of mutations do not depend on time. For each time
interval, for each sequence, a random number generator
(RNG) generatesN integers between 1 and, with a flat
B distribution; hence each site in each individual sequence is
Hence the following “conditional entropy’S! describes the statistically triggered once. Once triggered, this site may flip

o pgt
=t 4
p(jtlis) o (4)

S

influence uporj wheni carriess: its spin, with a fixed probabilityy (thermal flip.
Influenced flip rule. However, ifi influencesj, the trig-
Sisj _ _Zt p(jt|is)In[p(jt]is)]. (5) gering ofj induces the calculation of a modified probability

(1—yst)« for the flip, wherey is time independent. I is,

e.g., a positive number, the flip probability is thus smaller
Since the situation ait most often is not “pure” because when the sping andt ati andj, respectively, are parallel.
more than one value of is found from one sequence to (Alternately, rather than using a parameterone may as
another, the indicator to be used as a criterion is, logicallywell set two distinct, arbitrary probabilities for spin flips cre-
the sum of weighted conditional entropies ating and destroying ferromagnetigm.



6314 B. G. GIRAUD, ALAN LAPEDES, AND LON CHANG LIU PRE 58

Binary tree rule. An N site “ancestor,” “generation V. NUMERICAL RESULTS FROM THE ELEMENTARY
1,” is selected at random. Its sites evolve under the thermal MODEL
or influenced flip rules foll time intervals(during which the

RNG thus generateBN integers between 1 ard). Then it b X ) X
duplicates into two identical copies, making generation 2sufﬂment to consider only two sites, one independent and
) ’ I one influenced. Larger values df, however, with a small
The sites of these descendents evolve for agdime inter-  ronortion of interacting pairs of sites, are mandatory to pro-
vals (thus 2T N site labels are generated by the RN@& the  vide at least an intuitive estimate of statistical fluctuations.
end of which each member of this generation duplicates int@©ut of many numerical runs, the following results corre-
identical twins. The process is stopped at the end of generspond toN= 10, with sites 2 and 3 programmed to be influ-
tion G, with a populationm=2%"1, enced by sites 8 and 9, respectively. It will be noticed that
Star rule. For comparison with the statistical properties With N=10 the number of independent ancestors is 1024;

of the “tree population,” where successive duplications into/'€N¢€ @ few hundred ancestors300-500) are enough for
the implementation of the averaging rule while leaving room

identical twins obviously create “genetically correlated” de- 5, some fluctuations.

grees of freedom, 2 * identical copies of the same ancestor  Typical results are described by the following “tree” and

are considered initially and evolve independently &  “star” matrices A(j|i), displayed, respectively, the former

time intervals. above the lattertNotice thati is a row index and a column
Averaging rule. For each ancestor one calculates theindex) The parameters ar€=6 and henceM=32; then

values ofS, SI, A(j|i), etc., as properties of the corre- a=0.0015 andl =20, which give an average total probabil-

sponding final generation, generati@ As will be dis- ity ~aT=0.03 for thermally mutating each site during each

o L . eneration. For influenced spins, when triggered, we set an
cussed later in this paper, statistical fluctuations are not ne lementary probability 11 times larger thanto flip into a

ligible. It is thus necessary to average such quantities over frromagnetic situation and a strictly null probability for an-
sampling of independent ancestors. In the next section thigferromagnetic flips. Such a choice corresponds to a strong
averaging is performed over hundreds of ancestors. interaction

A priori, because of the link isolation rule, it could be

0 212 178 211 196 193 210 203 202 199
214 0 179 212 197 193 211147 204 203

214 213 0 212 200 195 213 208152 203

214 212 178 0 196 193 211 205 204 203
212 210 180 210 O 192 208 202 205 201
213 211 179 211 197 0 210 204 203 205
212 211 179 211 194 191 O 204 202 200
213 154 179 212 196 193 212 0 203 201
211 211 125 211 198 192 209 203 O 201
210 211 178 211 196 195 209 203 202 [0

0 280 287 279 278 290 290 276 283 279
291 0 288 279 275 289 292179 282 279

291 281 0 279 277 290 291 276190 278

291 279 287 0 278 290 293 275 283 280
292 278 288 281 0 289 291 276 283 279
290 278 287 279 275 0 292 276 283 280
288 279 285 281 275 290 0 275 282 276
291 182 287 278 277 290 291 O 282 279
291 278 194 279 277 291 292 276 0 280
291 278 285 280 276 290 289 275 283 [0
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entropies / 1ln 4 entropies / 1n 4

FIG. 1. Nonreciprocal influences. Tree and star evolution prop-
erties as functions of the mutation rate=10°w. Light full lines,
average single site entropy for isolated sites; heavy full lines, aver-
age weighted conditional entropy for sites under influence; dashed ) ) ) ]
lines, average weighted conditional entropy for influencing sites. F!G- 2. Reciprocal influences. Tree and star evolution properties
For each type of line, the loweluppe) line corresponds to tree @S functions of the mutation ratk= 10_3“' Dotted lines, average
(stap results. single site entropy for isolated sites; light full lines, average single

site entropy for sites under reciprocal influence; dashed lines, aver-
age weighted conditional entropy in those columns of matrix
where influence is detected; heavy full lines, average weighted con-

) ] ] ditional entropy for sites under reciprocal influence. For each type
Here both matrices are normalized by a denominator In 4, th@f line, the lower(uppe) line corresponds to tregtap results.

maximum entropy of a system of two spifs and, for clar-
ity, only the integer part of 10Q0(j|i)/In 4 is shown. Sev-
eral results appear. Diagonal ter8—S' trivially vanish.
Indeed, according to the definition biY,, there is no differ-  A(i|j) in columni, and a “largea’ regime, whereA(j|i)
ence at site between counting two-site situatioss and < A(i|j). The caser=0.0015 shown above was indeed cho-
one-site situations and Ng,=0 if s#t. For nondiagonal sen because of its transitional situation. It must be stressed,
terms, except for a few matrix elements(j|i)<$, as seen however, that such conclusions are valid for averages only.
from the corresponding lists of one-site entropig26, 223, Fluctuations in individual trees and stars were found to cre-
189, 223, 210, 205, 223, 216, 216, 2Emd{303, 292, 299, ate many exceptions.
292, 289, 303, 305, 289, 295, 29r the tree and star cases,  We now turn to the case of reciprocal influences. Namely,
respectively. A slight, systematic underestimation reflects thehe link isolation rule is modified and noyvinfluencesi in
usual overestimation oM. The “genetic” correlations the same way aisinfluences, all other rules, the influenced
present in the tree data give systematically smaller entropieffip rule in particular, remaining the same. For the sake of
than those for the star. Conversely, fluctuations for the tregimplicity, we again avoid any chaining of influences: Inter-
case seem to be often a little stronger. The main result is tha&cting pairs of sites are isolated.
for both cases, despite all sources of errors, matrix elements A few illustrative results, among many runs, are shown in
A(2|8), A(3|9), A(8]2), and A(9|3) stand out as the Fig. 2, obtained with the same parameters as in FigN1 (
smallest in their column, ensuring the detection of links.=10, G=6, T=20, “ferromagnetic flip probability” 1k,
There is no clear hierarchy, however, betweg(2|8) and and “antiferromagnetic flips” forbidden six isolated sites,
A(8]2), nor betweer (3|9) andA(9|3), to detect that sites two symmetrically interacting pairf27} and {49}, and 500
8 and 9 influence 2 and 3, respectively, and not the reverseandom ancestors. The signature for influence is again a
While sites 2 and 3 have identical propertiég,2|8) and  strong minimum ofA(j|i) as a function ofi in columnj.
A(3]9) differ by an amount that indicates that fluctuationsFor both the tree and the star cases, the average entropy for
are indeed not negligible. Sites 1 and 4—10 which are neithesingle isolated sitegdotted ling increases as a function of
influenced nor influencing, show similar columns in the treethe thermal rater, while the average conditional entropy for
matrix [except for the presence af(8|2) andA(9|3), natu-  sites under influencéheavy ling decreases. The same trends
rally]. The same remark holds for the star matrix. Slight dif-were already shown by Fig. 1, with somewhat different en-
ferences between such columns indicate a “normal” amountropy values, however. We show in Fig. 2 two additional
of fluctuations. kinds of results: as a light full line, the average single site
All these conclusions are stable when one studies the inentropy for sites unddreciprocal influence, and as a dashed
fluence of the ratex. This is illustrated by Fig. 1 and an line, the average of those matrix elements thatcatumns
additional observation may be madei linfluencesj, there  contrastwith detectedA(i|j). The latter point is best under-
seems to be, for both the tree and the star models, a “smaditood by the consideration of the following tree and star
a” regime, whereA(j|i) is larger than its spurious partner matrices, respectively:
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0 139 89 149 86 90 144 77 143 f 0 219 135 219 141 138 218 136 219 0
88 0 87 147 85 86106 77 141 93| 142 0 135 221 140 137142 136 222 14

90 138 0O 148 86 88 144 78 142 92142 220 O 219 140 138 218 137 219 1
89 138 8 0 85 87 143 77102 91| 142 223 135 0 140 138 221 13746 140

89 139 88 148 O 88 144 77 143 93143 220 135 219 O 138 219 137 219 0
90 137 88 148 86 0 144 78 142 9B 142 219 135 218 140 O 218 137 219 1
87 101 87 146 84 86 0 76 141 9 142 144 135 221 140 138 0 137 222 140
89 140 89 150 87 89 145 0 144 93141 219 136 219 140 139 219 O 219 0
88 138 87 108 86 87 143 77 0 92| 142 223 135 146 140 138 222 137 0 14

88 140 88 148 87 89 144 77 143 [ 142 220 135 218 139 139 218 136 218 [0

obtained for «=0.005. The matrix elements\(2|7), and 9 vanishes, and no detection is possible in such columns.
A(4]9), A(7]|2), andA(9|4), which reflect the influences Also, a spurious contrast occurs in columns 1 and 5, where
programmed in the run, are detected as minima in columns\(5/1) andA(1|5) stand out as much smaller, while actu-
not rows. Accordingly, the dashed curves in Fig. 2 show theally this run allowed interactions inside pai{&7} and{49}
averages of such 32 “larger” numbers in columns 2, 4, 7,only. Similar aberrant cases are not infrequent in simulations
and 9, this is, for the tree and star cases, respectively. As asf a star topology as well.

additional conclusion, for all the values afthat were con- To summarize this section, @ontrast between average
sidered, it is found that\(j|i)=A(i|j) wheni andj are  weighted conditional entropies was found to give a detection
reciprocally influencing each other. criterion for correlations between sites. The signal may be

All told, the expected intensity of the signal that allows ablurred by the noise of fluctuations, however, if the interac-
detection of an interaction corresponds to the distance bdion between sites is weak or the sampling of ancestors is not
tween a heavy line and the associated dashed line in Fig. Bumerous enough. The next section investigates the proper-
In the range of parameters displayed there, this intensity ifies of such “noise.”
about three times smaller for trees than for stars. For trees, it
is seen to be~0.05 In 4=0.07, which leaves hope for suc- V. SYSTEMATIC STUDY OF FLUCTUATIONS
cessful detections in realistic cases.

About fluctuationssevere exceptions to the conclusions Given the above, it is clear that, for such biological se-
drawn from averages may happen in the cassonfaveraged —guences, there is a non-negligible risk for statistical averages,
data. As an illustration, the following tree matrix, obtained taken from an actual population, to differ significantly from
with «=0.02 and all other parameters identical to those usetfue probability averages. A detailed description and under-
for Fig. 2, refers toone ancestor only. Note how much the standing of this risk is in order. For that purpose, we now
matrix conflicts with averaged data: During the 120 timegenerate a model where fluctuations can be exhibited in a
intervals of the run, only 13 mutations happened and in partransparent way. The model is very similar, except for a few
ticular no mutation triggered influenced flips at sites 2, 4, 7 details, to that explained in Sec. lIl. Consider again aisite
and 9. ThereforeS?=5*=5"=5=0: occupied by a “spin” with only two allowed values 1. The

basic ingredient of the model is the matfXs,r) giving the
probability that, within the lifetime of one generation, site

0 O 87 0 29 264 0 81 0 8 starting with spinr finishes with spins. Three generations
494 0 100 O 499 272 0 100 O 100 are considered in the model, with a common ancestor 1spin
at sitei. For the star, a divergence infol =8 descendents is
481 0 0 0 481 269 0 100 O 140 allowed from the very root of the process. For the tree, a
494 0 100 0O 499 272 0 100 O 100 divergence into two descendents is allowed at the root and
two additional levels of duplication are allowed. At the end
2920 8 0 0 261 0 8 0 8 _ of the lifetime of three generations, the probability distribu-
487 0 97 0 488 0 0 97 0 9 tion for the spinss,t,u,v,w,x,y,z of a star population of
494 0 100 O 499 272 0 100 O 100 eight descendents is thus
475 0 100 O 484 269 0 O O 1qQo
494 0 100 O 499 272 0 100 O 100 S(s,t,u,0,W,X,y,2)=P3(s,r)P3(t,r ) P3(u,r)P3(v,r)
L 481 0 100 O 484 269 0O 100 O ><733(W,r)PS(X,r)P3(y,r)P3(Z,r),
It must be remembered here that the semipositive nature of (8)

the mutual information induces the automatic condition
A(j|i)<S. Hence the whole corresponding columns 2, 4, 7 where, naturally;?® denotes the matrix cube @. In turn,
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o= 2 S(s,t,u,v,W,X,Y,2)

s,t,u, ...,z

stt+utv+w+x+y+z
% 8

(12b

for the tree and star, respectivelyn a condensed notation,
such “integrals” are denoted &s)+s in the following)

Here we are interested in the observaBle (s+t+u
+v+w+x+y+2)/8 ando=(R), where the subscripgl or
S is understood. We are also interested in the fluctuations of
R,

S £t u v w X Y 4 s t u v w X VY 2z

2_ 2
FIG. 3. lllustration of the three generation tree and star models (AR) _<(R_U) >
used in Sec. V. =((s+t+u+v+w+x+y+2)?)/64—c?, (13

the probability distributiorZ for the spins of the tree popu- which are given by polynomials with respect4oGiven the

lation of eight descendentsee Fig. 3is easily derived from  same root = +1 for a tree and a star, the following proper-

the three-index probability ties are easy to showi) the average value of the spin is the
same for all individuals

o(/,mr)=P(/,r)P(m,r) €)

T7=05=(8)7=(S)s=" " =(2)7=(2)s= (1~ 2¢)° 1

that at sitei a spinr, once duplicated, turns into spirsand

m as its descendents. All told one finds and (ii) for the star, correlations vanish since the branches
are independent,

7(s,t,u,v,W,X,Y,2)

((s—o)(t—0))s=((s—0a)(U—0))s="""
= > Q(st,n)Q(u,v,0)Q(W,X,p) =((y—0)(z—0))s=0, (15

/,m,n,0,p,q

while for the tree one finds(st)=(uv)={(wx)=(yz)
X Qy,za)Q(n.0.)Q(p.amAZmn). (10 37 52 g then (su)=(sv)=(tu)=(tv) = (wy)
=(wz)=(xy)=(xz2)=(1—-2¢)* and finally (sw)=(sx)
In a transparent notatiow; andm are here the spins of the =-=(vw)=+--=(vy)=(vz)=(1—2¢)®. The relation of
two descendents at the end of the first generation. They amuch overlaps with the degree of parentage of the spins is
followed byn, o, p, andq at the end of the second genera- opvious. Hence the correlatiorf¢s— o) (t— o) )7 at closest
tion. parentage an¢(s— o)(u— o)) at next-to-closest parentage

For the sake of simplicity, we set are positive definite if & £<0.5. Any third-order parentage
correlation such a¢(s—e)(w— o)) vanishes, as expected
because there is no difference between the tree and star his-
tories at that degree in this model. Also, obviously, any av-
erage of squared spins giveg) =1 for both the tree and the
star and no cross term is negative. The results for-1 are
quite similar, under a replacement of-Re by 2¢—1. It can
be concluded that

1—¢ e

P(s,r)= -

11

in the following, with a parametet taking on all values
between 0 and 0.5The relation ofe with the parameter
used earlier is trivia). Most relevant properties of the model
are thus elementary functions ef Their study can some- (AR)Z=
times even be reduced to polynomial operations with respect T
to e. Such is indeed the case for the average value of the

spin, as sampled over the population of eight descendents _1_(1_28)6 (16)
and averaged over the probability distributicher S, B 8 '

1+(1-2¢)?+2(1—2¢)*—4(1—2¢)°®
8

>(AR)%

namely, the sampling of the average spin over a finite popu-
lation induces a larger fluctuation for the tree than for the

T S’t’;_ |, Tstuo,wxy,2) star. It will be noticed here that\R) s illustrates the central
limit theorem (CLT) in a transparent way. Conversely, the
XS+t+U+v+W+ Xty+z (123 positive correlations brought by the tree dynamics increase
8 ' the fluctuations of the average sampled SRin
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Alternate procedures are available and deserve comment G-1

because they give different estimates of sampling fluctua- 1-(1-2¢)%%+ 3 2P7Y(1-2¢)%P—(1-2¢)%°]
tions. Indeed, one may define, as a measure of the quctuanqlgR)Z_ p=1
the quantity 26
G-1_ _ G_
5 stt+u+v+wHx+y+z)|2 —2-G 1__+B[ﬁ 1 _2=AB~-1)
(Ap)°={|s— 8 , (17 2 2(B—1) 2674 (p-1)

(21)

which describes how, in each population, individual spinswith 8=2(1—2¢)? Sincee is small in realistic cases, an
may deviate from the average spin. The results read investigation of AR)Z in the vicinity of B<2 is in order.
For such values oB and large values o the leading term
, ) ] of (AR)Z amounts to (2 8)B%/2°*1, the maximum of
(Ap)2 _7—(1—-2¢)"—2(1—-2¢)"—4(1—2e) which is reached fo=2G/(G+1), a value indeed hardly
PIT 8 smaller than 2. The corresponding estimated maximum reads
6 approximately [—2 ¢+G®(G+1)"¢)(G-1)"%, the
7[1-(1-2e) ] (18) asymptotic trend of which is approximatele @) . The
8 “tree deviation” from the CLT is thus striking since, for
comparison, A(sR)‘zS contains a denominator®2

Naturally, one might also have considered averages of There is a qualitative relation betwedn, or Ap, and the

square differences between all spin pairs, one-site entropys' defined in Sec. Il, namely, if any one of
these observables vanish, then the others vanish simulta-

neously. It is clear that, in turn, correlation functions be-
(A7)%2 =([(s—1t)%+(s—u)?+---+(y—2)?])/28, (19)  tween spins at siteand spins at sit¢ would also provide an
“algebraic” intuition for the behavior of the two-site en-
tropy S!. For the sake of conciseness, however, we now
investigate directly the effect of finite sampling upon the
various observableS', S', M", andA(j|i). Letst,... z
(1-26)24+2(1—2¢)*+4(1—2¢)® be the eight spins at siteands’,t’, ...z’ be those at sitg.
7 We label the root of the three generation tree or star fas

<(Ap)5=

with the results,

(An)5F=2|1-

1+R

i
S 2

1+R
=2

sitei andr’ for site j. No interaction is implemented be-
<(AT)§= 2[1-(1-2¢)°]. (20 tween the two sites because only “bare” fluctuations due to
finite sampling are investigated here. We have thoroughly

It may be interesting to give a mechanical image of suct verified that, under such an independence, results are the
results[Egs. (16), (18), and(20)]. Consider the spins as fic- same whether=r’ orr#r’. Let(Q be any observable that
titious “part-icles,” ana the “avérage by samplingR=(s Is a function of all or part of the flnal_s_plrst, -2, sueh
+t+---+2)/8 as their center of mass. Then the positive cor-as the sampled one-site entropy at site
relations, introduced by the tree dynamics, compress the
“root mean squared relative distance” describedbyand (1-R n 1_R) 22
dilate the center-of-mass fluctuation describedA#y. This 2 2 )
connection between the two numbekf and A7 may be
understood as @ecessary uncertainty relatiprsomewhat WwhereR=(s+t+---+2)/8 is the center of mass. The nu-
similar to the traditional uncertainity relation of quantum merical results that follow are those averages defined by
mechanics. One may make the qualitative conclusion that a
reduced diversity inside a population may lead to a stronger
global drift of that population. A similar intuition results (O)7= > Tst, ... 0)Ts' V', ....2")0,
from a mechanical image afp as the dispersion of a par- st,...zs't, ... 2 (239
ticle with respect to the “center of mass.” The tree dynamics
tends to compress this individual dispersion, as compared to
that allowed by the star dynamics independence. Accord- L ,
ingly, individual compressions relate to a more likely global <O>5:3t th, . Sst,....9)8(s, ... 20
drift. o (23b)

There is no difficulty in generalizing all these consider-
ations to models with more thamt =8 individuals because, for the tree and star, respectively; see BE&$.and (10). Of
obviously, “center of mass observables” imply positive special interest are the one- and two-site mutual and condi-
signs multiplying the correlations while “relative motion ob- tional entropies, as already defined in Sec. Il, naturally, and
servables” imply negative signs multiplying the same. Thethe corresponding fluctuationsO=[(©0?)—(©0)?]*2,
duality of such observables is systematic. In particular, while We show, in Fig. 4, the averages of the one- and two-site
the CLT is obviously valid for AR) 5, the result for AR) 7, entropies for the three generation tree and star, respectively,
with G generations and{ =26, reads in units of In 4, as functions of. (Actually, this plot uses an
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entropies / In 4 misleading. Two differences from Fig. 4 are seén:the

0.8 — fluctuations are not monotonic functions efand (ii) tree
fluctuations are larger than star ones, while tree entropies
were smaller. HencAS/(S) is larger for trees than for stars.

In terms of relative rather than absolute errors, statistical
sampling from finite populations driven by evolutionay dy-
0.4 namics down a tree demands special caution.
Finally, Fig. 7 shows the behaviors of the fluctuations
AMY (bottom pair of curvesand A[A(j|i)] (upper pai).
We find that whethee=<0.04 or, converselyg=0.04, the
fluctuation of the mutual information igslightly) larger or
E smaller, respectively, for the star than for the tree. More
important, it is seen thatM'! tends to be somewhat smaller

FIG. 4. Tree and star average properties after three generationthan A[ A(j|i)], which would point to the mutual informa-
One- and two-sitsampledentropies in units of In 4 as functions of tion as a better criterion. Returning to Fig. 5, however, where
the mutation rate parameté&=40e. The lower pair of curves (A(j|i)) is significantly larger than the spurious nonvanish-
shows(S'). The star entropy is slightly larger than the tree one. Theing (M'!), it seems safer to stick ta(j|i) as a criterion for
upper pair of curves shows"). Again (S")s=(S")r. true correlations. Indeed, with such a likely smallelative

error, drops ofA(j|i), as observed in the columns of the
auxilliary rate E=40¢.) A saturation is observed when matrices of Sec. lll, make a cleaner signal.
=0.2. Both entropies are slightly larger for the star than for To summarize this section there is some evidence(that
the tree. Since sitdsand]j are independent in the model, one a tabulation of noise levels is reasonably easy from elemen-
should find(S1)=2(S'). However, because of the errors tary models andii) in any case the “drop oA(j|i)” crite-
brought by finite sampling in a population of eight individual rion is always useful. The next section attempts to generalize
sequences only, a close examination of Fig. 4 shows thajuch optimistic conclusions.
actually (S7) is rather slightly, but systematically, smaller
than 2S').

Then we show, in Fig. 5, the averages of the mutual and
the weighted conditional entropies. Properties similar to
those of Fig. 4 are observed. Moreover, it must be stressed
that, since the sites are independent, one might expect In Sec. Il we defined observables valid for any num&er
(M1y=0 and(A(j|i))=(S') for both the tree and the star. of spin values, while only the cas=2 was investigated in
Clear deviations, however, due to finite sampling, are foundsecs. 1l1-V. For DNA and RNAS=4 and for proteinsS
from such predictions. ActuallyM") is far from vanishing =20. Numerical simulations for such cases, not reported
and, furthermore, the plateau @k (ji)) in Fig. 5 seriously here, do not give results that contradict, or differ significantly
differs from that of(S') in Fig. 4. S _ from, those discussed and listed in Secs. llI-V. Similar de-

We now turn to the fluctuationd S} ,ASY ,AS ASL, creases of weighted conditional entropy, for instance, are ob-
shown in Fig. 6, in that order, from top to bottom. It is seenserved in the case of influence between sites. Similar back-
that such fluctuations are almost as large for one-site entraground noise, due to fluctuations, is also present. There is a
pies as for two-site ones. Moreover, their order of magnitudelifference in the formalism to be used, however, pertaining
can be almost as large as a one-site average entropy itself, s the coding of states and mutations. W4, for in-
shown by the values reached whes0.04. This shows how stance, and a labeling of adenine, thymine, guanine, and cy-
the estimation of an entropy over a small population can beéosine by 1, 2, 3, and 4, respectively, a mutation from ad-

2 4 6 8 10

VI. GENERALIZATIONS TO MODELS WITH ANY
NUMBER OF BASES AND/OR AMINOACIDS:
THE INVERSION PROBLEM

mutual info, weight condit / 1ln 4
0.35¢}

2 4 6 8 10
FIG. 5. Same as Fig. 4, but for the sampled mutual information and the sampled, weighted conditional entropy. The lower pair of curves
shows(M') and the upper pair showg(j|i)). Inside each pair, the upper curve corresponds to the star results.
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enine to guanine and a mutation from thymine to cytosinevherev=1 and the partition functiod is a sum over all the
would both be coded by an increase of the spin label by 22N sequences that can be constructed when the occupation
The problem of interpretation raised by such an ambiguity imumbers take on values 0 and 1,

hardly acceptable. There is thus less interest in generalizing

Egs.(12)—(21), unless each of the 16 possible mutations has N N N s
a specific coding compatible with such generalized equa- z=> ex;{_E > A= > > Aninl
tions. The mutual information and the conditional entropy, {n} i=1s=1 i=1j>is=1t=1
nevertheless, retain their definitions without any difficulty in N s N
this formalism. i i
N o . - A 1= n . 2
For S>2 it is simpler to code the situation at sitdy S Zl ( 521 S) } @)

occupation numbers., s=1,2,...,S, restricted to two val- A N

uesn.=0 andn.=1. Also an obvious constraiff,n.=1  The Lagrange multiplersy and\ ¢, are adjusted later in such

shall restrict the 8 possibilities, offered by such a coding, to & Way as to satisfy the constrain@4),

the onlyS meaningful ones. Except for such a constraint, the

numbersny are otherwise independent random variables. 9Z A NSO

Similar sets of occupation numberg, with similar con- vL=—Z‘1W=Z‘1E Ng exn[—E > g

straints=nl=1, will describe the situation at all the other s i

sitesj. The occurrence numbers considered in Sec. Il are NN S S

then nothing buNZ=32% ni(a)ni(a), wherea labels each -2 2 X 2 Adnin!

individual in the sampled population and, obviousty(a)

andni{(a) describe the presence or absence of residuwesl N s

t at sites andj, respectively, in this individuad. Thus Eqgs. i iz 13 pipl ex;{—z S Aln
t S§''S

(1)—(7) generalize, trivially. It is easy to create null models,
with or without dynamical correlations between sites, gener-
alizing the models and results of Secs. IlI-V. In particular NNS S
there is no difficulty in generalizing Eq&23). -> > 2 2 Nninl|. (28D
Rather than a tabulation and calibration of true and spu-
rious amounts of correlations derived from such elementarytyhe remaining Lagrange multipliekd are adjusted in such a
models, the present section presents a solution of the foIIOV\(,-\,ay as to satisfy Eq(25), naturally, with »=1. However,
ing “inverse problem”[9]: Givenaverage values of observ- noihing prevents us from taking priori a unique and large
ables, obtained from sampling, positive valueA for such remaining parameters while setting
v=_2 in order to better enforce the constrai(®5). The sum-
M . ) . -
i a1 i mations then run, in practice, over the o) admissible
vs=(Ng)=M azl ny(a), configurations, where one solves for, e.g., the twentieth oc-
cupation number in terms of the other nineteen. Orids
calculated via such suitabBN configurations, this amounts,
in the space of Lagrange multipliers, to solve for the mini-
mum of the free energy

I
-
\
[7)

I
[
-

1
[

M
(i) =M Y nyani(a), (29

and the additional constraints

S :
> ni=1, i=1,...N, (25) (29)
s=1

L i . Convexity properties make this minimum unigied]. The
what are the sites andj whose contacts are compatible with process therefore returns a unique set of paramageesid
such constraints? i

The traditional probability distribution with maximum en- Asi-

Define a “contact index”C'l that vanishes if siteand]
10{?./ fioi iseque’i}f:za; fodeds}by Sﬁg;eresthcg frfg:;?;]i}ﬁts do not interact. Conversely, defir@’=1 when such sites
= sy =4 Ny, 0= 4,0y,

. are close enough to induce interactions. It is reasonable to
listed by Eqs(24) and(25), reads assignC'=0 to those pairsj of sites for whichall the A,

(s=1,...S t=1,...9), as obtained from the procedure
P(a)=2"! ex _2 2 )\isnis(a) that has just been d.es.crlbed, are vanishing or small in some
i=1s=1 sense. Conversely, it is reasonable to as€lyr=1 whenat
N N S s least oneof these\; is large. This raises a problem of scale
_ ij i j for the various\’s. We shall assume that such numbers, or
E E Aeng(ayni(a) ] st :
i=1j>i $=1{=1 rather their absolute values, cluster into two groups, namely,

the “small” and the “Iarge’_’_|)\isjt| s, respectively. For those
(26) pairs{ij} for which every|\{| is small, it can be concluded
thatC" =0. Conversely, for those pairs of sites for whiah

14

-2 w(l—i nL(a)) ,

=1
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entropy fluctuations / 1n 4
0.25¢

E
2 4 6 8 10
FIG. 6. Same as Fig. 4, but for the fluctuationsSbindS. The lower pair of curves showsS' and the upper pair showsS!. Inside
each pair, the upper curve now corresponds to the tree results.

least one of the|)\i5jt| 's is a member of the other cluster, algorithmic information theory, incorporating conditional
namely, this A is interpreted as large, it can be concludedprobablities. The indicatak(j|i) defined by Eqs(5) and(6)
thatC'=1. drops significantly when there is a causal relation between
Preliminary calculationf9] show that this procedure may sitesi andj and the drop does not seem to be overly sensi-
eliminate spurious chainings. That such a result is possiblgjve to statistical fluctuations or to correlations induced by
while not mandatory, is easy to understand from Exf), shared ancestry. The more familiar mutual information be-
which, although parametrized by one- and two-body featuregyeen sitedVl’/ does not seem to be so robust.
only, trivially allows for observables of any higher rank. For  The failure is related to this first result. We did not find a
instance, it is straightforward to calculate three-body observclear signature for nonreciprocal influences. From a physical
ables such a$n'sn{n5>. point of view this is not a major issue since action and reac-
To summarize this section, multiple valued spin modelstion are reciprocal. In the case of historical evolutions,
are available, and simple enough, to study the influence ahough, with delayed actions, this problem is not without
statistical fluctuations upon remote site correlations. Beyonghterest and deserves further investigation.
numerical tabulations of various noise levels, and corre- The second result is the large available claspmafcti-
sponding confidence levels, fod" and/orA(j|i) for trees  cablespin models, null models without interactions, or more
and stars, the maximum entropy procedure described by Egsealistic ones with intersite influences. As we discussed in
(26)—(28) (see also[9]) provides convenient estimates of some detail, both analytically and numerically, such models
links ¢, between sites and of resulting contact indi€s are quite useful to understand the role of statistical fluctua-
tions linked to finite sampling and those associated with ef-
fects of shared ancestry of sequences. The point is, naturally,
that various degrees of freedom of the problem are not inde-
In the search for evidence of contacts between seeminglpendent variables and the central limit theorem is violated. In
remote sites of biological sequences, this paper essentialthe comparison between models of evolution down a tree
reports three results and one failure. versus star topologies, an intuitive “uncertainty principle”
The first result is the validation of a criterion related to was formalized: Those evolutions that favor similarity be-

VII. DISCUSSION AND CONCLUSIONS

fluctuations mutual, conditional / 1n 4
0.18¢
0.16}
0.14¢

0.12}

0.08¢

0.06f

0.04¢

FIG. 7. Fluctuations oM" (lower pair of curvesandA(j|i) (upper paiy. For the upper pairA[A(j|i)]~>A[A(jli)]s. For the lower
pair, the star fluctuation is larger than the tree one=f0.04. It becomes smaller =0.04.
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tween individuals amplify collective deviations from ances-cluster into two groups of, respectively, large and small cou-

tral properties. It is trivial to generalize to multivalued spins plings. However, the convexity of this algorithm and the

the “sign argument” used after Eq20). Namely, any posi- uniqueness of the couplings provided by this solution are

tive result for a correlatiotiny(a)ny(b)) —(n.)? between in-  worth consideration. In addition to the preliminary results

dividuals will induce a lowering of the interindividual presented irf9] and the results reported here, a systematic

<[n's(a)—nls(b)]2> dispersion and, simultaneouly, an in- investigation of the application of this formalism to real bio-

crease of the fluctuation of the center of mass averagl9gical sequencegl2] is in progress.

M ~1=.ni(a) over the population. Above all, such models

are va_luable for a n_umerical tabulat_ion of such fluctuations. ACKNOWLEDGMENTS
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